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Nonlinear oblique interactions between two slightly dispersive gravity waves 
(in particular, solitary waves) of dimensionless amplitudes a1 and a, (relative to 
depth) and relative inclination 2$ (between wave normals) are classified as weak 
if sin,+ a,,% or strong if $, = O ( ~ X ~ , ~ ) .  Weak interactions permit superposition 
of the individual solutions of the Korteweg-de Vries equation in first approxi- 
mation; the interaction term, which is O(a,a,), then is determined from these 
basic solutions. 

Strong interactions are intrinsically nonlinear. It is shown that these inter- 
actions are phase-conserving (the sum of the phases of the incoming waves is 
equal to the sum of the phases of the outgoing waves) if la,-a,l > (2+)2 but 
not if Ia2-a,l < (2$)2 (e.g. the reflexion problem, for which the interacting 
waves are images and a, = a,). It also is shown that the interactions are singular, 
in the sense that regular incoming waves with sech2 profiles yield singular out- 
going waves with - csch2 profiles, if 

Regular interactions appear to be impossible within this singular regime, and 
its end points, I7,b-I = $+, are associated with resonant interactions. 

1. Introduction 
A striking property of solitons (soliton z Boussinesq's solitary wave in the 

present context) is their asymptotic preservation of form following en interaction. 
Two distinct types of one-dimensional interaction have been studied: (i) two 
or more solitons of different strengths move in the same direction, interact for a 
relatively long time, and emerge with phase shifts that are O( 1) as a J. 0, where 

(1.1) a = free-surface amplitude[quiescent depth; 

(ii) two solitons move in opposite directions, interact for a. relatively short time, 
and emerge with phase shifts that are O(a). The first type of interaction, which 
has been widely studied [see Scott, Chu & McLaughlin (1973) and Whitham 
(1974)t for references], is governed by the Korteweg-de Vries (KdV) equation 
and may be analytically characterized as essentially nonlinear, or strong. The 
second class, which includes reflexion at a rigid wall, may be analytically 

t Whitham's treatise is referred to throughout the subsequent exposition by the prefix 
W, followed by the appropriate section or equation number. 
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characterized as weak in the sense that the first approximation to the solution may 
be obtained simply by superimposing the solutions of the KdV equation for the 
individual solitons. It appears to have been studied originally by Gwyther (1 900) 
and subsequently by Meyer (1963), Benney & Luke (1964), Byatt-Smith (1971), 
Oikawa & Yajima (1973), Chen (1975) and Satsuma (1976). 

Gwyther (1900) obtained, but did not integrate, a result that is equivalent to 
(3.7) below for the special case of reflexion and inferred from it that the inter- 
action term is of second order. 

Meyer’s (1963) discussion is based on the Boussinesq equation, which is in- 
applicable to waves travelling in different directions (see remarks by Lin & 
Clark 1959; Long 1964; Byatt-Smith 1971). Nevertheless, Meyer’s qualitative 
conclusion, that the solutions of the KdV equation for oppositely directed 
solitary waves may be superimposed in first approximation, is correct. Oikawa 
& Yajima (1973) also obtain results for solitary-wave reflexion from the Bous- 
sinesq equation, although they appear to recognize the inapplicability of these 
results to water waves. 

Benney & Luke (1964) give a systematic formulation of the perturbation 
problem for two-dimensional weak interactions of the type considered here; 
however, as pointed out by Byatt-Smith, their end result for the reflexion problem 
is incorrect. 

Byatt-Smith (1  97 1)  derives an integral-equation formulation of the bounda,ry- 
value problem for one-dimensional surface waves without the prior invocation 
of scaling approximations. He then obtains a second approximation, including 
all O(a2) terms, to its solution for the reflexion of a solitary wave. 

Chen (1975) shows that the Backlund transformation previously applied to 
the one-dimensional problem (cf. W $17.12) may be extended to interactions 
between two obliquely directed solitons, his q, and q,, to obtain a ‘wedged 
soliton’, his q3. He does not give an explicit representation of q3; however, after 
making appropriate choices of the four parameters (two for each of q, and q,) 
that are implicit in his result, I find that i t  is equivalent to (6.5) below. 

Satsuma (1976) solves a ‘two-dimensional KdV equation’ to obtain equiva- 
lents of (6.5)-(6.7) below and gives a formal solution for an oblique interaction 
among N solitons. His asymptotic interpretation of his solution differs from that 
given in $6  (see below). 

I consider here the interaction between two obliquely moving solitons, starting 
(in $2)  from perturbation equations that are equivalent to those developed by 
Lin & Clark (1959), Benney & Luke (1964) and Whitham (W§ 13.11). The general 
problem is characterized by three parameters, which comprise the amplitudes 
of the two basic waves and the relative inclination of their normals. Let c, be 
the wave speed of the nth wave (n = 1,2)  and 211. the angle between the wave 
normals n, and n2; then a [see (l.l)], 

(1.2a, b )  

are suitable measures of mean strength, relative strength and obliquity. It 
follows from the perturbation equations that an interaction is weak if K B a or 
strong if K = O(a) as a40 (the adjective strong is used here in the sense of 

e = (c, - c,)/(c, + c,), K = sin2 11. 
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scattering theory, but it should be emphasized that the actual nonlinearity 
remains weak in the sense that the perturbation equations are valid). It also 
follows from the perturbation equations that 

€ = l a  41 2 - a11 + 0(a2), (1.3) 

where el, ,d (d = quiescent depth) are the maximum amplitudes of the incoming 
waves. 

I give a general solution for K 9 a in $ 3 that is similar in principle to that given 
by Benney & Luke (1964) and describes a weak interaction between any two 
solutions of the KdV equation. It includes reflexion at a rigid wall as a special 
case, with results that provide a simple generalization of those given by Byatt- 
Smith (1971) for normal reflexion of a solitary wave. 

I then go on in 8 5 (after recapitulating the known results for a solitary wave in 
3 4) to consider the problem of grazing reflexion, for which E = 0, @2 = - @l = @ 
and K = O(a) ,  and obtain an explicit solution of the perturbation equations 
through an extension of a Riccati-type transformation applied previously by 
Hirota and Whitham (see 8 W17.2) to the one-dimensional problem. The principal 
result is that if the incoming solitary wave has the dimensionless free-surface 
displacement 

ql = sech28,, 8, = kl(n,.x-clt) ,  (1.4a, b) 
the reflected wave is given (asymptotically) by 

7 2 8  = sech2 (8, - s), (1.5) 

where s = $log{K/(K- 3a)}, (1.6) 
and 8, is given by (1.4b) with n, replaced by n2 (but kl = k, and c2 = c ~ ) .  The 
reflected wave is singular according to q N - csch2 (8 - 9 6 )  if K < 3a, and 
regular reflexion then appears to be impossible (see penultimate paragraph in 
this section). 

Reflexion may be regarded as a symmetrical interaction between the incoming 
wave 7, and its image q, that yields the outgoing waves 718 and 728; in brief, 

Y 7 2 1  3 {7lD 7zsh (1.7) 

where q,Q differs from q, only by the negative phase shift 6. It is worth remarking 
that the interaction is stationary in a reference frame that moves parallel to the 
reflecting boundary with the speed c, = c1 sec @ (see below). 

I extend the solution of $5 to two interacting solitons of unequal strengths 
( E  + 0) in $ 6  [Satsuma (1976) and, to a lesser extent, Chen (1975) have anticipated 
me in the basic solution (6.5) but not in the interpretation thereof (see below)]. 
The resolution among incoming and outgoing waves is less direct than for the 
reflexion problem in consequence of a spatial non-uniformity of the asymptotic 
limits t + & 00 with 8, fixed; however, this difficulty is avoided by adopting a 
reference frame R, in which the interaction is stationary. The speed and orien- 
tation of R, are determined by the requirement that the projection of its velocity 
c* on the wave normal of each of the interacting waves be equal to the phase 
velocity of that wave (cf. Snell’s law) : 

n1,2 c ,  = c1.2. (1.8) 
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Proceeding in this wa,y, I find that the interactions are of the form 

{916, 921 --f h, 9261, (1.9) 

and therefore phase-conserving (the sum of the phases of the incoming waves is 
equal to the sum of the phases of the outgoing waves), if 8 < - tan2 $ and simi- 
larly, with 1-2, if E > tan2$; they are of the form (1.7), and therefore not 
phase-conserving, if < tan2 $. Satsuma (1 976) overlooks the spatial non- 
uniformity of the asymptotic limits t -+ & co with 0, fixed and concludes that all 
interactions are phase-conserving, like those of (1.9) but unlike those of (1.7). 

The phase shift for a2 9 al is given by [cf. (1.6) for a, = a2] 

where 

(1.10) 

(1.11) 

The interactionisregular if either K < K- or K > K+, but it is singular if K- < K < K+. 

(An arbitrary constant, not necessarily real, may be added to the phase 0,. If 
this constant is determined such that either 7, or vns is regular, then either ma 
or 7, is singular if K- < K < K+.)  Both Chen (1975) and Satsuma (1976) appear to 
overlook the existence of the singular regime K- < K < K+, although it is implicit 
in Satsuma’s solution, as also are other such regimes for N > 2. 

The full significance of the singular regime is not clear a t  this time. It is con- 
ceivable that the singular solutions could represent waves of depression in those 
parts of their domains in which they remain finite; however, it  is known, from 
Scott Russell’s ( 1844) experiments and from the consideration that nonlinearity 
and dispersion both reduce the speed of a depression of the free surface (whereas 
they have opposite effects, and are in ba.lance, for a. solitary wave), that a solitary 
wave of depression is impossible, and it seems more likely that the singular 
solutions are unstable and that a regular interaction between two solitary waves 
is impossible in the parametric domain K- < K < K+. This conclusion is supported 
by field and laboratory observations (Wiegel 1964) that regular reflexion gives 
way to ‘Mach reflexion ’ (geometrically similar to the corresponding shock-wave 
reflexion) for sufficiently small $, although the available data appear to be 
inadequate for quantitative comparison with the present results.? 

It appears to be significant that the conditions K = K+ are precisely those 
necessary for a resonant interaction among three solitary waves with k3 = k, k k, 
and k,c, = k2c2 A klcl (the alternative signs are vertically ordered). I plan to 
discuss these interactions and their relevance to Mach reflexion in a subsequent 
paper. 

2. Perturbation equations 
Following Whitham (W 9 13.1 l), we henceforth use only dimensionless vari- 

ables. Let Zx = Z{x, z} and dy be horizontal and vertical co-ordinates, Zt/(gd)* the 
t Moses (1976) obtains solution of a two-dimensional KdV equation with the “possible 

interpretation . . . that it corresponds to the reflection of a wave by a wall, in which the 
incident wave is singular and the reflected wave is nonsingular but highly dispersive”. 
There appears to be little or no relation between his solution and that for a conventional 
solitary wave. 
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time, ay the free-surface displacement and la(g/cl)+ $ the velocity potential, 
where d is the quiescent depth, a = ad is a characteristic amplitude and 1 = d/,/b 
is a characteristic wavelength; then the boundary-value problem for inviscid 
irrotational motion is described by 

rjJt + aV$ - vy  - P-'$* = 0 ( 2 . 3 ~ ~ )  

and T+$t+ga(v$)2++ap-'qq. = 0 ( y  = I+ar),  (2.3b) 

where V and A = V2 are the gradient and Laplacian operators in a horizontal 
plane, and subscripts imply partial differentiation. 

Posing the solution of (2.1) and (2.2) in the form 

$@, Y, t )  = 2 ( -PA)" f (X ,  t )  Y2m/(2m)! (2.4) 
0 

and eliminating 7 between (2.3a, b )  yields 

T = -ft - +a(vf)2 + W t t t  + @a2) 

ftt - A f  = - a w l +  (Vf)"t + iPftttt + 0(a2). 

(2-5) 

(2.6) and 

3. Weak interactions 
A wave that is slowly varying in a reference frame moving with the basic 

wave speed a t  an angle $ with respect to the x axis may be described byf = F(5, 7), 
where 

E = n - x - t ,  n = (cos$,sin$], T =at ,  ( 3 . 1 ~ ~  b, c) 

and 3' satisfies the KdV-like equation 

2aF, + ZaF; + +p2i;fs + O(a2) = 0 (3.2) 

in first approximation. We proceed on the hypothesis that the interaction be- 
tween two such waves may be described by 

f(El,52,7) = Fl(E1Y 7) + F2(52> 7) +42(51,52,7), (3.3) 

where 5, (n = 1,2)  is given by (3.1) with $ = $,, F, is prescribed and satisfies 
(3.2), and q2 is to be determined. Note that only the first approximation to F, 
is required for the determination of the first approximation to F,, but that F, 
may comprise O(a) components that are not determined by (3.2). 

Transforming (2.5) and (2.6) yields 

T = (a l+a2-aa , ) f -a{~(a , f )2+B(a2f)2+ ( 1 - 2 4  (4f) (82f)) 
- QP(a, + Q 3 f +  O(a2)  (3.4) 

and 
(4 + 8,) [2aa,f+ 4 ( a l f ) 2  + W 2 f ) 2  + (3  - 4 4  (3, f) (a,f)) + +P(a,+ a,WI 

-4Ka,a,f+O(a2) = 0, (3.5) 

where K = Q(1-nl.n2) = sin2+($1-$2) (3.6) 
I1 F L M  79 
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and a, implies partial differentiation with respect to En. Substituting (3.3) into 
(3.5) and requiring each of Fl and Fz to satisfy (3.2) yields the interaction equation 

(3.7) 

( 3 4  
plus an arbitrary function of the form GI(&, 7) + Gz(gz, T),  which (by definition) 
is comprised by the O(a)  component of Pl+F2. After substituting (3.8) into (3.3) 
and invoking Taylor's theorem, we obtain 

where X n  = - 1) Fn(En, 7 ) .  (3.10) 

Substituting (3.9) into (3.4) and eliminating a,Fn with the aid of (3.2), we 
obtain 

7 = Nl(t1+XZ37) + N 2 ( E Z + X 1 , 7 )  +aIN1N2+O(a2), (3.11) 

where N, = (a , - ;pa~)Fn+~d(anFn)'+O(a2)  (n = 1,2)  (3.12) 

and I = # ~ - ~ - 3 + 2 ~ .  (3.13) 

The interaction parameter I decreases from 4 for K = 1 to a minimum of 0-464 
at K = 0.866 and then increases monotonically with decreasing K ;  however, the 
hypothesis that the interaction is O(a)  holds only for K > a, and the approxima- 
tions (3.8)-(3.11) fail for K = O(a) .  

The solution for the reflexion of a wave incident from {-a, a} at an angle 
- $ with respect to a rigid wall a t  z = 0 is obtained by setting $z = - $, = $, 
K = sin2 $, F, = F2 = P and N, = N, = N in (3.9)-(3.13), such that aF/az = 0 a t  
z = 0. The run-up at the wall is given by 

70 = 2WflO+XO,7) +aINZ('50,7)+O(a2), (3.14) 

where 6, =xcos$-t, xo = a(&c-1-l)P(go,7). (3.15a, b )  
The maximum run-up is (after restoring dimensions) 2a + I(az/d) if a is the ampli- 
tude of the incident wave (such that N,,, = 1). 

(3 - 4K) (8, + 82) a1& a2F2 - 4K 8, a2&z + O(a)  = 0. 

PI2 = (W- I) (a, + a,) P1P2 + O(a) 

Integrating (3.7) yields? 

f = m 5 1  + x2,7) + F2(EZ + x197) + O(a2),  (3.9) 

4. Solitary wave 
The solitary wave is, by hypothesis, a function of the single phase variable 

where k 2 kn is the wavenumber, w = kc is the angular frequency, c is the wave 
speed and 8, = kE, is a phase constant. The solution for a wave of maximum 
amplitude and then is given by (Laitone 1960) 

8 = k*x-wt+O,  k [ t + & - { ( C -  I) /a)T], (4.1) 

a7 = an( I -$an tanh2 8) sech2 8 + O(a3), (4.2) 
p*kn = (&.~~)+(i-#a~)+o(az), C, = 1+3an-&&+0(a3). ( 4 . 3 ~ ,  b )  

The characteristic length 1 is arbitrary, and we choose p = &i below. 

-f The result (3.8) is equivalent to Benney & Luke's (1964) equation (34). They do not 
give counterparts of the general results (3.11)-(3.15), but their result (39) for the reflexion 
of a solitary wave differs significantly from (4.4) below. 
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Substituting (4 .2)  into (3.10)-(3.12) and choosing l?, = 0 a t  8, = CQ yields 

a7 = a,( 1 - fa, tanh, 8,) sech2 (8, + x,) + a,( 1 - $a, tanh2 8,) sech, (8, + x,) 
(after re-normalizing x,) 

+ a,a,l sech, 19, sech2 8, + O(a2), (4 .4 )  

where X, = (a,a,)~ (1 - f ~ - l )  (1 - tanh 8,) + O(a2). (4 .5)  

5. Strong symmetric interactions 
We now consider the interaction between two solitary waves with a, = a, = a, 

/3 = $a, $, = - $, = $ > 0 and K = sin2 $ = O(a)  (we avoid the approximation 
K = $, in order to facilitate comparison with the results for K > a). Guided by 
Whitham’s (Wg 17.2) treatment of the unidirectional interaction (for which 
$, = $, = 0 and a, 9 a,), we invoke the transformation 

f = 9logE(8,,8,), = .92logE(B,,8,)+O(a), (&la,  b )  

where 8, =xcos$+(-)nxsin$-ct = En-$- (n = l , 2 ) ,  ( 5 . 2 ~ )  

(5 .2b ,  c) 

and 9 = a, + a,, a, = ape,. (5.3a, b)  

k, = 1 + O(a) ,  c, = 1 + +a + O(a2) 

Substituting (5.1~) into (3.5) with K = O(a)  yields 

a [ { ~ g  - (9~)) q . 9 2  - 4 )  E + 3{(932~)2 - (9~) ( 9 3 ~ ) ) l  

- l6~{Ea,a,E- (8,E) (a,E)}+O(a2) = 0. 

Following Whitham’s procedure, we obtain the solution [cf. W( 17.18)] 

(5.4) 

E = 1+E,+E,+e28EE,E,, En = exp(-28,), (5.5a, b )  

where 6 = +log {.I(. - 34) .  (5.6) 

Substituting (5.5) into (5.1) yields 

El + E,  + e28(4 + El + E,) El E, 
(1+El+E,+e2SE,E , )2  ’ 

t r  = (5.7) 

Error factors of 1 +O(a)  are implicit in (5.5) and (5.7) a,nd in the subsequent 
approximations to E and 7. 

Remarking that 8, - 8, = 2x sin $ > 0, we let 8, f 00 with O1 fixed in (5.7) to 
obtain 

N sech20, = ql [O, = O(l) ,  z f a ] ,  (5 .8)  

which describes an incoming solitary wave in x > 0 (see figure 1).  Similarly, we 
let 8, J. - 00 with 8, fixed to obtain 

N sech2 (0, - 6) = qZ8 [O, = O( l) ,  z f 001, (5.9) 

which describes a reflected solitary wave with the negative phase shift 6. [The 
converse limits, 8, ? 00 with 8, fixed and 6, $ - 00 with O1 fixed, yield the images 

11-2 
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FIGURE 1. The reflexion of the wave 7 = v1 ( N ,  in $3) from a rigid wall at z = 0. The 
wave surfaces of constant 8, (- - -) and Ba (- - -) advance with the phase veIocities 
nlc and nac, and the interaction is stationary in a reference frame moving parallel to the 
wall with the speed csec +. 
q N y2 and 7 N qle in z < 0, and the solution in the full plane then is equivalent 
to that of the following section with a1 = a, = a therein. The limits t --f & co 
with 8, fixed imply O2 - 2ct sin $sin q5 see (q5 - @,), where q5 is the polar angle 
measured from the + x axis, and are non-uniform in the neighbourhood of the 
Stokes line q4 = &r + $, and similarly for 1 -2.1 

The interaction is stationary, and therefore optimally resolved, in a reference 
frame moving with the velocity c{sec @, O} .  Introducing the co-ordinates 

LL: = xcos$-ct-iS, x = zsin@, (5,10a, b )  

such that 81,2 = z + ir3 T x in (5.7), we obtain (see figure 2) 

7 = 4( 1 + e-6 cosh 2 x  cosh 2x)/(cosh 2 s  + e-s cosh 2x)2, (5.11) 

and qmax = 4(1 +e-s)-l = 2(1 +tanhis)  (Z = x = 0). (5.12) 

Letting CX/K J. 0 in (5 .6)  and (5.7) yields 

6 = $(./K) + O ( a / K ) 2  (5.13) 

and 7 = sech2 O1 + sech2 8, + S{sech2 8, sech2 8, 
+ sech2 8, tanh el( 1 - tanh 0,) + sech2 8, tanh 8,( 1 - tanh 8,)) + O(S2), 

(5.14) 

which is identical to the approximation obtained by setting al = a, = a and 
retaining only the dominant terms in a / ~  as ~ $ 0  in (4.4). In  brief, (4.4) and 
(5.7) are matched approximations for the reflexion problem in the overlapping 
domain a < K < 1. 

The preceding solution is formally valid for K < 301, but then (the results are 
independent of which branch of the logarithm is selected) 

S = A+gi,, A = &10g{K/(3a:-~)}, (5.15) 



Obliquely interacting solitary waves 165 

z 

4 2  

FIGURE 2.  The interaction-zone profiles given by (5.10) and (5.11): (a) 6 = 0; (b )  6 = 2. 

(5.8) remains unchanged, (5.9) describes the singular wave 

7 N - csch2 (62 -A)  [02 = O( l) ,  z t 003, (5.16) 

and (5.11) transforms to 

7 = 4(e-A sinh 2 s  cosh 2z - l)/(sinh 2 s  + e-A cosh 2 ~ ) ~ ,  (5.17) 

where rn is obtained by replacing 6 by A in (5.10a). It follows from (5.17) that 
(see figure 3) 

7 < 0 for x < isinh-l (eAsech2x) 3 q, (a)  (5.18) 

and 7 = -a on x = -4sinh-l (e-Acosh2z) 3 a&). (5.19) 

The hypotheses of weak dispersion and weak nonlinearity obviously fail 
in the neighbourhood of x = zm(x).  The most plausible interpretation of this 
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Srn S O  

- 2 ;  - , A = 0; - .  -, A = 2. 
FIGURE 3. The loci of q = 0 and q = CO, s = mo(x)  and s = s,,,(z), as determined from 

(5.17)-(5.19). ---, A = 

singularity in the present context is that regular reflexion of a solitary wave 
is impossible for 0 < K < 3a. 

6. Strong asymmetric interaction 

Replacing (5.2) and (5.3) by 
We now extend the formulation of $ 5 to two solitary waves of unequal strength. 

0, = k , ( x c o s ~ , + ~ s i n ~ , - c ~ t ) + ~ ~ , ,  (6.la) 

(6.1 b, c )  

and 9 = kla, + k,a,, a, = ape, (6.2a, b )  

yields a[{E9  - ( 9 E ) )  (g3 - 4k:a1 - 4k33,) E + 3{(92E),  - ( 9 B )  (93E))I 

p k, = A, = (pan)+ {I + O(a)) ,  c, = 1 + *an + O(a2) 

- 1 6 k 1 1 c , ~ { E ~ , a 2 E - ( ~ , E ) ( a , E ) ) + o ( a 2 )  = o (6.3) 

in place of (5.4). The required solution remains of the form (5 .5 ) ,  but with (note 
that A; = A; = p = Qa in $5) 

6 = g log [{K - (Ig.1 - A,)”/{K - (A1 + Q 2 } ]  (6.4) 

in place of (5.6). Substituting (5.5) and (6.2) into (5.1) yields 

in place of (5.7). An error factor of 1 + O(a) is implicit in (6.5) and in the subse- 
quent approximations to 7. 
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Setting K = 0 in (6.4) and (6.5) yields the equivalent of W(17.21); setting 
k2 = k, = 1 yields (5.6) and (5.7); letting a / K $ O  with cc < K < 1 matches (4.4). 
Letting 8,-+ f co with 8, fixed and similarly for 1:- 2 yields [cf. (5.8) and (5.9)] 

( 6 . 6 ~ 4  b) 

where 7, = k: sech2 8,, = k: sech2 (8, - 6). (6.7a, b )  

The interaction is stationary, and the resolution of incoming and outgoing 
waves among 71, rrs, q2 and 728 is optimal, in a reference frame, hereinafter R,, 
moving with the velocity c* = c* {cos $*, sin $*I, which is determined by the 
requirements that its component normal to a surface of constant en be equal to 
cn for both n = 1 and n = 2 or, equivalently (cf. Snell's law), 

Solving (6.8) for c* and $* yields (after some trigonometric reduction) 

c* = +(c1+c2) (sec2$++2csc2$)+ (6.9) 

and (6.10) 

where $ = w 2  - E = (c2 - Cl)/(C2 + c1) (6.11 a, b )  

are relative measures of direction and speed. We assume $ > 0, thereby excluding 
unidirectional interactions (for which R, does not exist); the results for this 
special case are given in Wg17.2 and need not be discussed here. We also note 
that (6.8)-(6.11) are valid for arbitrary (real) values of c, and $,, even though 
@ = O(a4) and B = *(a2 -al) + O(a2) in the present context. 

$* = +($1 + $,) + t a r 1  (e cot $), 

We now align the x axis with c*, such that $, = 0, 

tan $l = - (tan $ + E cot $)I( 1 - e) 

tan $2 = (tan $ - e cot $)I( 1 + E )  

( 6 . 1 2 ~ )  

(6.12 b )  and 

(note that are small if and only if 181 < $), and transform ( 6 . 1 ~ )  to 

0, = (c,/k,c,) (8, - eon) = x - c* t + z tan $,. (6.13) 

The geometrical implications of the asymptotic limits of (6.6) in R, then may be 
inferred from the signs of tan $, and 

O2 - O1 = z (tan $2 - tan $,) = (c",clc2) z sin 2$ (6.14) 

(cf. 8, - 8, = 22 sin $ in 3 5, wherein c1 = c2 = c* cos $). The limits O2 --f rf: co with 
8, fixed, as in (6.6a), imply z +- f 00 (signs vertically ordered), and the corre- 
sponding wave surfaces will appear downstream/upstream of (outgoing/incoming 
to) an observer in R, if tan$l > 0 or upstreamldownstream if tan$l < 0. 
Similarly, 8,+ & co with 8, fixed, as in (6.6 b ) ,  implies x -+ 7 00, and the corres- 
ponding wave surfaces will appear upstream/downstream if tan$, > 0 or 
downstreamlupstream if tan 3b2 < 0. The sign of tan $, is determined by (6.12) 
and depends on the ratio €cot2$ = The scale of the interaction zone if e 
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'. 

(0) (b)  (c) 

FIGURE 4. The asymptotic (scattering) limits described by (6.6) and (6.15) in the co- 
ordinates x* = x - ~ *  t and z* = z tan y% (the z co-ordinate is stretched for graphical 
resolution): (a )  E < - tan2@; ( b )  181 < tan2$; (c) E > tan2$. The interaction is stationary 
in this reference frame, and incomingloutgoing waves appear downstream/upstream of 
x*, z* = O(1) .  The broken lines are surfaces of constant O1 (- - -) and 0, (- - -). 

01- 02- 2 %  7-  x-c*t --- 7 

71 
O(1) +a +a T c o  f a  +a, 

T2 
k m  O(1) T c o  +co I C O  T c o  

€ < - K  [ € [ < K  E > K  

718 

7 2 8  

TABLE 1. The asymptotic limits associated with (6.15) and figure 4 

and $2 are of the same magnitude is 1 = in the x direction and llcd - d/a 
in the z direction; the scale for $z < E is essentially that for a unidirectional inter- 
action (Wg 17.2). 

The preceding limits are summarized in table 1,  and representative results are 
sketched in figure 4. Summing up, we find that (6.5) describes the scattering 
(incoming + outgoing) interactions 

(7189 721 -+{TI, 7 2 8 1  (6 < - tan2 $ 1 9  ( 6 . 1 5 ~ )  

:Tl>Tz1+{Tls~Tzs1 ( ( € 1  < tan2$), (6.15 b)  

{71,7281 -f (718, 721 (e  ' tan2 $1. (6.15~) 

We remark that the interactions described by (6.15a, c) ,  but not (6.15b), are 
phase-conserving (the sum of the phases of the incoming waves is equal to the 
sum of the phases of the outgoing waves). 

The marginal cases E = T tan2 $ invite special comment. Setting E = - tan2 $ 
in (6.9) and (6.10) yields c* = c1 and $* = $l = 0:  an observer in R, then per- 
ceives 7 - T1/y18 on his leftlright and 7 - Tz/7z8 upstream/downstream. Similarly, 
6 = tan2$ implies $* = $2 = 0 and c* = c2, and an observer in R, perceives 
7 - qZ8/T2 on his leftlright and y - T1/T18 upstream/downstream. 

The solution (6.5) is regular for all x and t if and only if 6 is real, i.e. if either 

( 6 . 1 6 ~ )  (i) 0 < K < ( k 2 - k 1 ) 2  ZE K- (8 < 0) 
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or (ii) 1 > K > (h2+!i1)2 = K+ (6 > 0); (6.16 b )  

it  is singular [cf. (5.14)] if 

(iii) K- < K < K+ (arg6 = +IT). (6.16 c) 

We remark that: (6.15b) holds throughout the regular regime (ii), so that all 
interactions in this regime, which includes all regular reflexions, are non-phase- 
conserving; ( 6 . 1 5 ~ )  holds throughout the regular regime (i) if 1 < aJa2 < 4, but 
the transition from (6.15a) to (6.15b) occurs within that regime if .,/a2 > 4; 
(6.15~) holds throughout (i) if 1 < a2/al < 4, but the transition from (6.15b) to 
( 6 . 1 5 ~ )  occurs within that regime if a2/al > 4. 
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